Could Algae Solve the Global Climate Crisis?

2022-06-24 20:25:26 By :

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Introduction So Why are Algae So Special? The Climate Change Problem Macroscopic Algae and Blue Carbon A Bio-Energy Reserve? References Further Reading

Algae can be utilized as a part of the mitigation strategy to reduce concentrations of carbon dioxide in the atmosphere associated with greenhouse gases and the global climate crisis. Here we discuss what makes algae so special, the global climate crisis, and the part algae can play in helping to combat the effects of global warming.

Algae. Image Credit: Chokniti-Studio/Shutterstock.com

Algae are photosynthetic organisms with plat-like characteristics mainly found in aquatic environments. They are classified Protista and sometimes Plantae, though this latter designation draws controversy. But whatever the taxonomical rank assigned, there is no doubting the enormous significance of these tremendously productive organisms.

There are seven types of algae, categorized based on pigmentation type and food reserves: green algae (Chlorophyta), euglenoids (Euglenophyta) , golden-brown algae and diatoms (Chrysophyta), fire algae (Pyrrophyta), red algae (Rhodophyta), yellow-green algae (Xanthophyta), and brown algae (Paeophyta).

Algae produce a vast quantity (thought to be about half) of the oxygen in the oceans, rivers, and lakes of the world. This feat is miraculously achieved at only roughly 1/10th of the biomass of the entire plant population on Earth. Algae need nitrogen, phosphate, water, CO2   and sunlight for efficient growth.

The main composition of algae comprises carbohydrates, lipids, proteins, carotenoids such as lutein, astaxanthin and fucoxanthin, and nucleic acids. The specific composition is dependent on algal strain and can also be influenced by method of cultivation. Algae possess notable capacities for photosynthesis and thus CO2   sequestration, excessive biomass production, high lipid accumulation and the production of valuable non-fuel co-products.

That algae sequester carbon for growth makes these organisms an invaluable asset in the mitigation of greenhouse gases and climate change and their integral role in our world's oceanic and coastal ecosystems means they are an important blue carbon sink. Research has also demonstrated the superior capacity of algae to produce bioenergy, biofuels, and biomaterials from terrestrial biomass ––most of this a by-product of agricultural or biodegradable waste.

Climate change refers to shifts in average temperature and weather patterns over time that occurs because of an increase in greenhouse gases in the Earth’s atmosphere. GHG emissions alongside industrialization, ocean acidification, soil erosion and deforestation are all implicated in the process of climate change. The concomitant increase in CO2   levels accounts for more than half of the warming potential.

A solution for the mitigation and reduction of carbon dioxide concentration in atmospheric air is CO2   capture and storage technology. These are divided into physical and biological ––the so-called green technologies. On the biological side, photosynthesis involving the sequestration of CO2   carried out by plants and algae is by far the most environmentally friendly and sustainable solution. This process is fostered through improvements made to natural sinks like forestation, ocean fertilization, and microalgae cultivation.

The Paris Agreement was a 2015 treaty on climate change that called for the removal of carbon from the atmosphere and the lowering of emissions. Since then, the United Nations Framework Convention on Climate Change (UNFCCC) has advocated for cutting carbon levels in order to limit global warming. It aims for less than a 2 °C temperature rise above pre-industrial levels.

A disproportionate amount of carbon sequestration is contributed by coastal vegetated ecosystems and the international community has agreed on a blue carbon initiative. The sequestration of CO2 by microalgae could be one of the most efficient and economical of the technological options available.

Macroalgae plays an important role in carbon sequestration. Image Credit: Citrus deliciosa/Shutterstock.com

Seaweed is a blue carbon sink. This macroalgae sequesters blue carbon and thus represents a climate change solution, although this realization has only been recently made. Not only this but it offers the potential for reducing our reliance on fossil fuels and for regenerative ocean farming with positive implications for future food security.

Blue carbon is organic carbon captured and stored by ocean and coastal ecosystems. Seaweed ecosystems sequester CO2 and contribute to the bioremediation of coastal pollutants and the habitat of other marine organisms.

However, the role of seaweed in blue carbon strategy has been controversial, particularly as, up until recently, researchers believed that seaweed decomposed in the ocean and played no role in the capture of carbon.

Now that it is understood that macroalgae do play an important role in carbon capture, we need to scale up the surface area covered by macroalgal-dominated systems and thus the level of sequestration potential on a global scale.

Algae are an attractive source of sustainable energy. Microalgae strains most efficient in CO2   bioconversion for biomass production include Scenedesmus obliquus, Botryococcus braunii, Chlorella vulgaris and Nannochloropsis oculate. Chlorella sp. has also been demonstrated to possess high biomass production (up to 1.06 g L/d).

The ideal species should possess a high sinking capacity and tolerance to various conditions such as CO2   concentration, toxic pollutant levels, temperature, nutrient limitations, and pH effect.

The two types of cultivation systems for algae are open pond (OP) and photobioreactor (PBR). OP is used most frequently in commercial microalgae cultivation. Green photosynthetic algae boast high growth rates and minimal spatial requirements (comparative to plants).

Nevertheless, algal potential in the production of biofuel remains technologically limited at present. It would take a pool three times the size of Belgium to approach just 10% of EU transport fuels.

Further ReadingAll Climate Change ContentHow is Climate Change Impacting Our Health?Impact of Chocolate on our Climate

I’m currently working as a post-doctoral fellow in the History of Science at the Leeds and Humanities Research Institute (LAHRI), at the University of Leeds. Broadly speaking my research area falls within the remit of the history of biology and history of technology in the twentieth century. More specifically I have specialist knowledge in the areas of electron microscopy and cellular and molecular biology, women in science and visual culture.

Please use one of the following formats to cite this article in your essay, paper or report:

Williams, Dr. Nicola. (2022, June 22). Could Algae Solve the Global Climate Crisis?. News-Medical. Retrieved on June 24, 2022 from https://www.news-medical.net/life-sciences/Could-Algae-Solve-the-Global-Climate-Crisis.aspx.

Williams, Dr. Nicola. "Could Algae Solve the Global Climate Crisis?". News-Medical. 24 June 2022. <https://www.news-medical.net/life-sciences/Could-Algae-Solve-the-Global-Climate-Crisis.aspx>.

Williams, Dr. Nicola. "Could Algae Solve the Global Climate Crisis?". News-Medical. https://www.news-medical.net/life-sciences/Could-Algae-Solve-the-Global-Climate-Crisis.aspx. (accessed June 24, 2022).

Williams, Dr. Nicola. 2022. Could Algae Solve the Global Climate Crisis?. News-Medical, viewed 24 June 2022, https://www.news-medical.net/life-sciences/Could-Algae-Solve-the-Global-Climate-Crisis.aspx.

As part of our SLAS Europe 2022 coverage, we speak to Professor Patricia Maguire from the University College Dublin about their AI_PREMie technology.

News-Medical speaks to Henry Fingerhut, Senior Policy Analyst for Science & Innovation at the Tony Blair Institute for Global Change, about genomic surveillance and its associated opportunities and challenges.

Dr. Chenqu Suo and Dr. Cecilia Domínguez Conde

In this interview, News-Medical speaks to two researchers each discussing their respective studies that have contributed to the Human Cell Atlas; Dr. Chenqu Suo and Dr. Cecilia Domínguez Conde from the Wellcome Sanger Institute.

News-Medical.Net provides this medical information service in accordance with these terms and conditions. Please note that medical information found on this website is designed to support, not to replace the relationship between patient and physician/doctor and the medical advice they may provide.

This site complies with the HONcode standard for trustworthy health information: verify here.

News-Medical.net - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022